Umpire: Performing Experiments to Determine Consistency of
Coalescing Heuristics Across Different Memory Pools

Avnoor Sidhu and Kiristi Belcher

Lawrence Livermore National Laboratory, Livermore, CA, USA

Introduction Methods

* The Umpire API provides memory management abstractions, including memory pools, for high| « Umpire provides a replay tool that can be used to analyze the performance of an application’s allocation of memory and

performance applications. reproduce bugs. The replay tool generates a .ult file which can be used with PyDV, a Python data visualizer, to generate
Pool with Empty Blocks plots. To conduct the experiment | will use SAMRALI, a C++ framework for block-structured AMR application development.
Memory pOO|S | mpm—— // umpire::ResourceManager allows to interact with Umpire API
Allocation that fits the size of a given block consist of blocks A— - auto& rm = umpire::ResourceManager::getinstance();
_ of allocated 3 o Mai // umpire::Allocator can be used to allocate and deallocate memory
Allocation that exceeds fthe size of all blocks: memory | 1_ o ~ umpire::Allocator allocator = rm.getAllocator("HOST");
_ 1 :[‘l— . i // Create a heuristic that will return true when 2 blocks are releasable
o 5. ﬂi— auto heuristic_function = umpire::strategy: :DynamicPool::blocks_releasable(2);
Without Coalescing With Coalescing | rfjJ— // Create a dynamic pool with the heuristic
Hp?—' auto pooled_allocator = rm.makeAllocator<umpire::strategy: :DynamicPool>("HOST_POOL",
Expand Memory Pool to Add a New Block Deallocate and Merge Empty Blocks A—_.LJJLI allocator, 1024ul, 1024ul, 16, heuristic_function);
_ _ _ | ' // Pool will contain 4 blocks each of size 1024 bytes
. . . Allocate New Request SAMRAI allows for mesh \]ég:ﬂ%;ni[?]i 0: i < 4 ++1)
* Without coalescing, fragmentation occurs D refinement where high a[i] = pooled_allocator.allocate(1024): Example code of where the coalescing
resolution is required. /7 peallocat would occur if there were multiple
eal 10Cate) . . .
. o . . nooled_allocator.deallocate(a[0]): allocations and deallocations within a pool.
* Umpire’s heuristics determine when to coalesce and what factors should trigger the call. . The programs used to test will nooled_allocator.deallocate(a[1]):
* Previous experiments have concluded it is best to call the be running on NVIDIA GPUs. // Two blocks Teft --> Pool will now coalesce the two empty blocks
coalescing function when a specific number of blocks are pooled_allocator.deallocate(a[2]);
releasable (Blocks-Releasable heuristic). pooled_allocator.deallocate(a[3]);
* My work will ensure that the previous coalescing heuristic I 't- I R It
results are valid across different pools (DynamicPoolList n | |a eS LI S
and QuickPool) and are consistent from one application
from another.
5_
— Pool Actual Size ° iro’
[oiaenioe Umpire's replay tool used to

D i SCUSS i on i Pool HighWaterMark show properties about

SAMRALI test application.

* By the end of summer my work will focus on these questions:

> * The Current Size fluctuates as
3
=

* Does the Blocks-Releasable heuristic give consistent performance benefits from one the program allocates and

application to another? 2- IHLMWHHMWHH SRR deallocates memory while the
* Does the Blocks-Releasable heuristic work equally well for the DynamicPoolList as it does) II 7 mw HighWaterMark stays at the

for QuickPool? ' ‘ i ~ maximum value of the Current
* |s the Blocks-Releasable heuristic a good coalescing heuristic to use as a default heuristic N m Size.

In Umpire? : i TR 3605 T 06 55550 350000

Time

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-852231

