
// umpire::ResourceManager allows to interact with Umpire API
auto& rm = umpire::ResourceManager::getInstance();

// umpire::Allocator can be used to allocate and deallocate memory
umpire::Allocator allocator = rm.getAllocator("HOST");

// Create a heuristic that will return true when 2 blocks are releasable
auto heuristic_function = umpire::strategy::DynamicPool::blocks_releasable(2);

// Create a dynamic pool with the heuristic
auto pooled_allocator = rm.makeAllocator<umpire::strategy::DynamicPool>("HOST_POOL",
allocator, 1024ul, 1024ul, 16, heuristic_function);

// Pool will contain 4 blocks each of size 1024 bytes
void* a[4];
for(int i = 0; i < 4; ++i)
 a[i] = pooled_allocator.allocate(1024);

// Deallocate
pooled_allocator.deallocate(a[0]);
pooled_allocator.deallocate(a[1]);

// Two blocks left --> Pool will now coalesce the two empty blocks

pooled_allocator.deallocate(a[2]);
pooled_allocator.deallocate(a[3]);

Umpire: Performing Experiments to Determine Consistency of
Coalescing Heuristics Across Different Memory Pools

Avnoor Sidhu and Kristi Belcher
Lawrence Livermore National Laboratory, Livermore, CA, USA

Introduction

Discussion

• The Umpire API provides memory management abstractions, including memory pools, for high
performance applications.

• Umpire’s heuristics determine when to coalesce and what factors should trigger the call.

Methods

Initial Results• My work will ensure that the previous coalescing heuristic
results are valid across different pools (DynamicPoolList
and QuickPool) and are consistent from one application
from another.

• SAMRAI allows for mesh
refinement where high
resolution is required.

• The programs used to test will
be running on NVIDIA GPUs.• Previous experiments have concluded it is best to call the

coalescing function when a specific number of blocks are
releasable (Blocks-Releasable heuristic).

• Umpire provides a replay tool that can be used to analyze the performance of an application’s allocation of memory and
reproduce bugs. The replay tool generates a .ult file which can be used with PyDV, a Python data visualizer, to generate

plots. To conduct the experiment I will use SAMRAI, a C++ framework for block-structured AMR application development.

Memory pools
consist of blocks
of allocated
memory

• Without coalescing, fragmentation occurs

Allocation that fits the size of a given block

With CoalescingWithout Coalescing

Pool with Empty Blocks

Allocation that exceeds the size of all blocks:

Expand Memory Pool to Add a New Block Deallocate and Merge Empty Blocks

Allocate New Request

• Example code of where the coalescing
would occur if there were multiple

allocations and deallocations within a pool.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-852231

• Is the Blocks-Releasable heuristic a good coalescing heuristic to use as a default heuristic
in Umpire?

• Does the Blocks-Releasable heuristic give consistent performance benefits from one
application to another?
• Does the Blocks-Releasable heuristic work equally well for the DynamicPoolList as it does

for QuickPool?

• Umpire’s replay tool used to
show properties about
SAMRAI test application.

• The Current Size fluctuates as
the program allocates and
deallocates memory while the
HighWaterMark stays at the
maximum value of the Current
Size.

• By the end of summer my work will focus on these questions:

