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Conclusions / Future Work

• Multiphase flow capabilities tested in Miranda 
• Numerical Experiments able to provide data on  

droplet behavior and survival times 
• Possible Cavitation breakup mechanism 

observed
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Impacts pose 
potential 
catastrophic 
damage to 
vehicle and 
mission failure:
• Surface Erosion 

and Ablation
• Mechanical 

Damage
• Heat Transfer
• Modified/ 

Unstable 
Aerodynamics

Instability Driven Breakup
• Aerodynamic deformation
• Kelvin-Helmholtz ; Shear 

Instability
• Rayleigh-Taylor ; Acceleration 

Instability

How rapidly will a hypersonic shock wave vaporize a water droplet? 

• Disagreement in droplet breakup/survival time with empirical 
predictions (Reinecke) 

• Models fail to capture coupled time-dependent breakup, 
evaporation behaviors
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Multiphase Physics
• Heating (thermal transport)
• Evaporation 
• Vapor species advection
• Supercritical regimes
• Cavitation

• Internal wave interactions
• External aerodynamics/dynamic pressure
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High (>67%+) likelihood of encountering 
atmospheric hydrometeors (droplets), 
generally exist in range ~ 10 um – 5mm
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1mm Droplet, Mach 30 Shock
Top: Numerical Schlieren (exp|∇𝞀|) 
Middle: Left: Water mass fraction (vapor + liquid) , Right: Water mass fraction (liquid)  
Bottom: Left: Pressure (Dyne), Right: Temperature (K) , Outline: Water liquid species

Shock Droplet Interactions

Z

R

Future Work:
• Parameter study; varied droplet 

diameters, varied Mach number, initial 
P,T (atmospheric/flight conditions)

• Variable acceleration/ shock coupled 
with expansion wave (compression wave)

• Development of reduced order models
Setup
• 1mm Droplet initialized as a sphere in 
    cylindrical coordinate system
•  Symmetric half-domain 
• Shock travelling in the +z direction
• Coordinate frame moving at 90% 

upstream speed (‘travelling’ with 
droplet)

Equations of State
Air:
• AESOP51 (Horak and Kodis)
Water:
• Two-Phase Liquid-Steam formulation 

(Nigmalutin & Bolotnova)

Miranda 
Used to solve the multi-component 
conservation equations for the transport 
of mass, momentum and energy
• Discretization via tenth-order compact 

finite difference scheme 
• Temporal integration with fourth-order 

Runge-Kutta method
• Eighth-order hyperviscosity, 

hyperviscosity, and hyperconductivity 
with eight-order spectral-like dealiasing 
for shock/interface capturing

Atmospheric Vehicles travelling at speeds upwards 
of Mach 5+ and relatively low altitude. 

Top: Pressure w/ H2O liquid/vapor species boundaries
Bottom: Artificial schlieren ( exp|∇𝞀| )
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Re0 = 1.88e+05 
We0 = 2.09e+05


