
Using Tensor Trains to Solve High-Dimensional PDE

We aim to use tensor trains to accurately solve high-dimensional PDE. To do this, we develop ways to efficiently compress operators and functions in the PDE into the 

tensor train format. We then directly solve the PDE in this compressed format on a reasonably fine grid and sample the solution without unzipping any information.
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• Tensor trains allow us to reduce the negative impact of the curse of 

dimensionality when solving high dimensional PDE

Benefits of Tensor Trains:

Figure 1: Runtime vs number of nodes in 1D for a 

conventional PDE solve vs a tensor train PDE solve

Motivation:
• Fluid flow PDE have extreme resolution requirements

• Adequately resolving all scales is far too expensive

• One solution is to recast the PDE into a statistical transport equation:

• Instead of solving the Navier-Stokes equations for a velocity field 𝑽, 

we solve a transport equation for a probability density function 𝑓
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Recast PDE: trade extreme resolution requirements for high dimensionality
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• Our immediate goal is to compute integrals of the following form:
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• Integrals of this form appear in the terms 𝑩 and 𝑫 in the transport 

PDE we wish to solve

• By leveraging the properties of exponentials, we can represent this 

function as a tensor train:
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• We can then perform a change of interval and approximate this 

integral using Gauss-Legendre quadrature

Next Steps:
• Test convergence rate of the numerical tensor train integration

• Use convergence rate data to develop optimal method for integrating 

the tensor train matrix

• Use this method to efficiently assemble 𝑩 and 𝑫 in the statistical 

transport PDE and solve for 𝑓
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Efficient Tensor Train Assembly:

• To solve a PDE with tensor trains, we must convert the terms in the 

PDE to the tensor train format

• Efficient assembly of these terms in the tensor train format is 

essential for maximizing code performance

• Leveraging symmetries in functions and operators often allows us to 

efficiently assemble tensor trains:

• Unlike the Laplacian, many operators and functions do not contain 

obvious symmetries
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Definition of a Tensor Train:

• Consider the discrete 𝑁𝑥𝑁 periodic Laplacian in 1D:

• With this representation, we only require 𝒪(2𝑁) storage

• The generalization of this compression process to 𝑑 dimensions is 

known as a tensor train

• Standard representation of this operator requires 𝒪(𝑁2) storage

• We can compress our representation of this operator:
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