Using Tensor Trains to Solve High-Dimensional PDE

Ryan Zapp ${ }^{1}$

William Schill ${ }^{1}$, Pierson Guthrey ${ }^{1}$
${ }^{1}$ Lawrence Livermore National Laboratory
August 3, 2023
5

LLNL DSTI Summer Poster Session

Instead of solving the Navier-Stokes equations for a velocity field \boldsymbol{V}
we solve a transport equation for a probability density function f

Definition of a Tensor Train:

- Consider the discrete $N x N$ periodic Laplacian in 1D:

$$
\nabla_{\boldsymbol{x}}^{2}=\frac{1}{\Delta x^{2}}\left[\begin{array}{ccc}
-2 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & -2
\end{array}\right]
$$

- Standard representation of this operator requires $\mathcal{O}\left(N^{2}\right)$ storage
- We can compress our representation of this operator:

$$
\left.\nabla_{x}^{2}=\frac{\partial^{2}}{\partial x^{2}} \otimes I=\frac{1}{\Delta x^{2}}\left[\begin{array}{ccc}
-2 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & -2
\end{array}\right] \otimes\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]\right\} \sqrt{N}
$$

- With this representation, we only require $\mathcal{O}(2 N)$ storage
- The generalization of this compression process to d dimensions is known as a tensor train

Benefits of Tensor Trains:

- Tensor trains allow us to reduce the negative impact of the curse of dimensionality when solving high dimensional PDE

Figure 1: Runtime vs number of nodes in 1D for a conventional PDE solve vs a tensor train PDE solve

Efficient Tensor Train Assembly:

- To solve a PDE with tensor trains, we must convert the terms in the PDE to the tensor train format
- Efficient assembly of these terms in the tensor train format is essential for maximizing code performance
- Leveraging symmetries in functions and operators often allows us to efficiently assemble tensor trains:

$$
\nabla_{\boldsymbol{x}}^{2}=\frac{\partial^{2}}{\partial x^{2}} \otimes I \otimes I+I \otimes \frac{\partial^{2}}{\partial y^{2}} \otimes I+I \otimes I \otimes \frac{\partial^{2}}{\partial z^{2}}
$$

- Unlike the Laplacian, many operators and functions do not contain obvious symmetries

Current Work:

Our immediate goal is to compute integrals of the following form:

$$
\begin{aligned}
& F(\boldsymbol{x}, \boldsymbol{\omega}, t)=\int_{\mathbb{R}^{3}} \frac{1}{r(\boldsymbol{x}, \boldsymbol{y})^{p}} f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}, t) d \boldsymbol{y} \\
& \frac{1}{r^{p}}=\frac{1}{\sqrt{\left(x_{0}-x\right)^{2}+\left(y_{0}-y\right)^{2}+\left(z_{0}-z\right)^{2}}}
\end{aligned}
$$

- Integrals of this form appear in the terms \boldsymbol{B} and \boldsymbol{D} in the transport PDE we wish to solve
- By leveraging the properties of exponentials, we can represent this function as a tensor train:

$$
\begin{gathered}
\frac{1}{r}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \otimes_{i=1}^{3} A(t) d t \\
A_{i, j}=e^{-t^{2}\left(x_{j}-x_{i}\right)^{2}}
\end{gathered}
$$

- We can then perform a change of interval and approximate this integral using Gauss-Legendre quadrature

Next Steps:

- Test convergence rate of the numerical tensor train integration
- Use convergence rate data to develop optimal method for integrating the tensor train matrix
- Use this method to efficiently assemble \boldsymbol{B} and \boldsymbol{D} in the statistical transport PDE and solve for f

Works Cited:

1) Li J, Qian Z, Zhou M. 2022 On the transport equation for probability density functions of turbulent vorticity fields.

